skip to main content


Search for: All records

Creators/Authors contains: "Cuevas, Elvira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal wetlands, vital for ecological diversity, have been significantly altered by anthropogenic activities, particularly in the Caribbean. These changes have created a complex mosaic of habitats and physicochemical conditions, further stressed by climate variability and sea-level rise. This study, conducted in Las Cucharillas Natural Reserve, a tropical urban coastal wetland in Puerto Rico, aimed to determine the effects of spatiotemporal variations in phreatic levels and salinity on soil mesofauna assemblages, crucial bio-indicators of environmental change. In 2020 and 2021, soil samples were collected from five diverse habitat types during different hydroperiods. Each sample was taken under four randomly selected plant types and processed using lighted Tullgren–Berlese extractors. Phreatic level and salinity were also measured. A total of 43 families were quantified, underscoring distinct habitat differences, similarities, and overall ecosystem diversity. Moderate correlations between phreatic levels, salinity, and mesofauna richness and abundance were determined. Peak richness and abundance were quantified at shallow (−0.03 to −0.07 m) and slightly moderate (−0.12 to −0.17 m) phreatic levels where oligohaline salinity (>0.5 to 5.0 ppt) prevails. The study highlights the adaptability of mesofauna to environmental shifts and their potential as biosensors for effective coastal wetland management amid climatic and anthropogenic pressures.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Mangrove wetlands are important ecosystems, yet human development coupled with climate change threatens mangroves and their large carbon stores. This study seeks to understand the soil carbon dynamics in hydrologically altered mangrove swamps by studying aboveground biomass estimates and belowground soil carbon concentrations in mangrove swamps with high, medium, and low levels of disturbance in Cataño, Jobos Bay, and Vieques, Puerto Rico. All three sites were affected by hurricane María in 2017, one year prior to the study. As a result of being hit by the Saffir-Simpson category 4 hurricane, the low-disturbance site had almost no living mangroves left during sampling. There was no correlation between level of hydrologic alteration and carbon storage, rather different patterns emerged for each of the three sites. At the highly disturbed location, belowground carbon mass averaged 0.048 ± 0.001 g-C cm−3 which increased with increased aboveground biomass. At the moderately disturbed location, belowground carbon mass averaged 0.047 ± 0.003 g-C cm−3 and corresponded to distance from open water. At the low-disturbed location, organic carbon was consistent between all sites and inorganic carbon concentrations controlled total carbon mass which averaged 0.048 ± 0.002 g-C cm−3. These results suggest that mangroves are adaptive and resilient and have the potential to retain their carbon storage capacities despite hydrologic alterations, but mass carbon storage within mangrove forests can be spatially variable in hydrologically altered conditions. 
    more » « less